НАУКА - ПРОИЗВОДСТВУ

УДК 636.1:633.2

ТЕХНОЛОГИИ ПОВЫШЕНИЯ ПЛОДОРОДИЯ И ИСПОЛЬЗОВАНИЯ МЕЛИОРИРОВАННЫХ МИНЕРАЛЬНЫХ ЗЕМЕЛЬ

А.С. Мееровский, А.Л. Бирюкович, Н.Ф. Башлаков, А.И. Чижик, И.Э. Леуто, К.М. Саквенков, П.Ф. Тиво, В.Н. Титов

Технологические приемы повышения плодородия переувлажняемых минеральных почв Поозерья

Поозерье занимает площадь более 4 млн. га, из которых около 2,3 млн. га составляют переувлажняемые земли, характеризующиеся чрезвычайно большой неоднородностью почвенного покрова и рельефа, мелкоконтурностью, в основном представленные дерново-подзолистыми и дерновыми глеевании, глееватыми, слабоглееватыми почвами.

Технология улучшения свойств пахотного и подпахотного слоев переувлажняемых минеральных почв включает методы и способы улучшения водного режима и особенности окультуривания земель со сложным почвенным покровом и неоднородным водным режимом, которые позволяют создать оптимальные показатели окультуренности связных минеральных почв: мощность пахотного слоя не ниже 25-30 см, переувлажнение пахотного слоя для зерновых культур не более 3 дней, влажность почвы в активном слое 50-70 % от полной влагоемкости, содержание гумуса 2,5-3,0 %, подвижных форм фосфора и калия 230-300 кг/га, рН в КСІ 5,7-6,5 и др.

Окультуривание и повышение продуктивности осушаемых минеральных земель обеспечивают выравнивание поверхности, узкозагонная вспашка, профилирование, гребневание, грядование и бороздование, глубокое рыхление и щелевание. Кроме того, при необходимости применяется известкование, внесение органических и минеральных удобрений: подстилочного навоза, компостов с использованием бесподстилочного навоза, сапропеля, соломы, льнокостры и отходов сельскохозяйственного производства. На отдаленных от производственных центров низкопродуктивных землях для их окультуривания целесообразно использовать сидераты. В качестве сидератов в почву запахивается зеленая масса однолетнего и многолетнего люпина, крестоцветных культур, а также пожнивных и корневых остатков убранных на зеленый корм растений. За счет запашки

корневых и пожнивных остатков многолетнего люпина на отдаленных от производственных центров низкопродуктивных землях можно получить до 35 ц/га к.ед. растениеводческой продукции, а при внесении дополнительных минеральных удобрений – свыше 60 ц/га к.ед.

Нормы внесения минеральных удобрений определяются величиной запланированных урожаев возделываемых культур, содержанием элементов питания в пахотном слое и рассчитываются из условий доведения их до оптимального уровня для данного типа почв, примерная доза которых составляет N_{70} P_{60} K_{90} на 1 га севооборотной площади.

Рекомендуемые приемы улучшения свойств переувлажняемых минеральных почв позволяют повысить продуктивность севооборотной площади в Поозерье до 60-65 ц/га к.ед. растениеводческой продукции, что на 20-25 % выше базовой технологии, получить экономию средств на единицу продукции 0,56 долл./ц, а в полном объеме внедрения в регионе на площади 150 тыс. га - 5 млн. долл., улучшить экологическую обстановку.

Технология формирования высокопродуктивных сенокосных травостоев на переувлажненных минеральных землях со сложным почвенным покровом в Поозерье

Технология разработана применительно к землям холмистого рельефа, на долю которых приходится 70 % пашни региона.

Для наиболее эффективного использования созданного водного режима структуру посевных площадей земель с холмисто-западинным рельефом следует формировать дифференцированно на основе контурно-мелиоративного устройства территории, условно разделив ее на три основных контура: переувлажненные межхолмные понижения, склоны холмов и равнинные участки.

При проведении реконструкции мелиоративных систем на склонах холмов, длина которых менее 150 м, осуществляют мероприятия по аккумуляции поверхностного стока (рыхление, щелевание и др.), а свыше 150 м — перехват поверхностных вод дренами-собирателями и комбинациями их с ложбинами различных конструкций в сочетании с мероприятиями по аккумуляции поверхностного стока. На переувлажненных межхолмных понижениях с глеевыми почвами, используемых под зерновые и пропашные культуры, рекомендуется комбинированный дренаж, предусматривающий применение закрытых собирателей (дрены, засыпанные фильтрующим материалом) в сочетании с кротованием или щелеванием.

Оптимальные показатели окультуренности этих почв следующие: мощность пахотного слоя 25-30 см, содержание гумуса 2,5-3,0%, под-

вижных форм фосфора и калия – по 230-300 мг/кг, рН в КС1 6,0-6,5.

На дерново-подзолистых почвах нормального увлажнения преобладающим видом ранних травостоев должна быть ежа сборная, ее сопутствующими видами — тимофеевка луговая, овсяница луговая и кострец безостый. Среднеспелые травосмеси формируются на основе костреца безостого и клевера лугового раннеспелого. В состав позднеспелых травосмесей включаются: тимофеевка луговая, овсяница луговая, кострец безостый и клевер луговой позднеспелый. На временно переувлажненных землях в составе травосмесей рекомендуется иметь клевер гибридный, овсяницу тростниковую и двукисточник тростниковый.

Примерные нормы внесения удобрений под злаковые травостои составляют: азота -90 кг, фосфора -40-60, калия -90-110 кг д.в., под бобовые травостои необходимо вносить только калийные и фосфорные удобрения в тех же дозах.

Для хозяйств, имеющих животноводческие комплексы, общая доза азота навозных стоков за вегетационный период на злаковых травостоях не должна превышать на супесчаных почвах 230 и суглинистых 250 кг/га. Их рекомендуется вносить дробными дозами под каждый укос, что обеспечивает прибавку урожая сухой массы трав не менее 30 ц/га.

При соблюдении технологии создания и использования сенокосных угодий срок высокопродуктивного использования травостоев не менее пяти лет, а на плодородных почвах с участием в травостое костреца безостого, двукисточника тростникового и люцерны — значительно больше. При этом с каждого гектара сенокосных угодий будет получено 50-60 ц. к. ед. с высоким качеством корма, что обеспечивает прибавку продуктивности сенокосных угодий на 25-30 %. Экономия средств на единицу продукции составит 0,4 долл./ц, а при полном объеме внедрения в регионе на площади 90 тыс. га — 5,2 млн. долл.

Практическое руководство по созданию и эксплуатации пастбищ

Для закладки пастбищ создают травостои двух типов — бобовозлаковые (краткосрочные с 4-5-летним сроком использования) и злаковые (долголетние с 8-10-летним использованием). Ранние злаковые травостои занимают 20-30 %, а бобово-злаковые травосмеси средне- и позднеспелые — 70-80 % всей площади пастбища.

При невысокой обеспеченности азотными удобрениями соотношение площади, занятой злаковыми и бобово-злаковыми травостоями,

определяют по формуле,

$$X = \frac{\Pi_p - \Pi_\phi}{\Pi_p} \times 100 ,$$

где X — доля площади культурного пастбища, занятого бобовозлаковыми травостоями; $Д_p$ — рекомендуемая доза азотных удобрений для злаковых травостоев, кг/га; $Д_{\varphi}$ — фактическая доза азотного удобрения. кг/га.

Для организации пастбищного конвейера используются участки с различными почвами, увлажнением, экспозицией склонов. При этом создаются несколько типов травостоев.

Норма высева зависит от способа и срока сева, продолжительности использования и состава компонентов травосмеси и составляет 21-27 кг/га.

Состав травосмесей для создания пастбищ:

- на автоморфных почвах раннеспелая травосмесь ежа сборная 10 кг/га + овсяница луговая 8 + тимофеевка луговая 4; среднеспелая клевер ползучий 3 + клевер луговой раннеспелый 3 + овсяница луговая (или кострец безостый) 12 + тимофеевка луговая 4; позднеспелая клевер ползучий 3 + клевер луговой позднеспелый 3 + овсяница луговая 8 + тимофеевка луговая 6 кг/га;
- на полугидроморфных и гидроморфных почвах раннеспелая ежа сборная 10 кг/га + лисохвост луговой 6 + овсяница луговая 6 + мятлик луговой 3; лисохвост луговой 10 + овсяница луговая (или кострец безостый) 8 + тимофеевка луговая 4 + мятлик луговой 3; среднеспелая клевер ползучий 4 + овсяница луговая 6 + тимофеевка луговая 4 + кострец безостый 8 (или лисохвост луговой 4) + мятлик луговой 3; клевер ползучий 4 + овсяница луговая (или кострец безостый) 8 + тимофеевка луговая 6 + лисохвост луговой 4 + мятлик луговой 3; позднеспелая клевер ползучий 4 + клевер гибридный 2 + тимофеевка луговая 6 + овсяница луговая 6 + лисохвост луговой 4 + мятлик луговой 3 (или райграс пастбищный 5); клевер ползучий 4 + клевер гибридный 2 + тимофеевка луговая 6 + овсяница луговая 6 + овсяница луговая 6 + мятлик луговой 3 кг/га.

При создании культурных пастбищ применяют подпокровный и беспокровный посев в весенние или летние сроки, что определяется особенностями почв, их плодородием, влагообеспеченностью.

Выпас скота следует начинать обычно со 2-го года жизни трав, при высоте травостоя 18-20 см. За сезон проводят 4 стравливания. На минеральных почвах при использовании вико-овсяной смеси в качестве покровной культуры стравливание пастбищ можно начинать в первый год

после посева трав. Выпас начинают при высоте стеблестоя 40-45 см. За сезон проводят 3 стравливания.

Очередность и сроки пастьбы скота в отдельных загонах, сроки скашивания излишков травы весной и интервалы между стравливаниями определяются разработанным примерным графиком.

Для периодического ремонта предлагается подсев трав в дернину.

Применение технологии увеличит продуктивность пастбища на 1,2-1,5 т к. е./га. Создание разновременно созревающих травостоев обеспечит увеличение содержания сырого протеина на 30-40 %. Это повышает качество корма и увеличивает продуктивность пастбища на 20-25 % без дополнительных денежных и трудовых затрат.

Система создания и рационального использования культурных пастбищ гарантирует бесперебойное обеспечение животных пастбищным кормом, снижает себестоимость животноводческой продукции на 26-30 % и трудовые затраты в 1,9-2,0 раза.

Применение перечисленных приемов в комплексе обеспечивает в стоимостном выражении через животноводческую продукцию (молоко) 101,2 у.е./га. Затраты на реализацию технологий – 71,6 у.е. на гектар. Чистая прибыль на 1 га равна 29,6 у.е. Период окупаемости затрат — 2,4 года.

Технология промышленного производства биологических ковров для крепления откосов земляных инженерных сооружений

Дёрн, выращенный промышленным способом, предназначается для борьбы с эрозией почвы на склонах естественных и искусственных возвышений, крепления откосов дамб и других инженерных земляных сооружений, озеленения территорий (газоны) в жилищном и городском строительстве, спортивных площадок и стадионов.

Его выращивают на торфяных и дерново-подзолистых глинистых, суглинистых и супесчаных почвах. Оптимальные показатели почв: pH 6,0-7,0, содержание гумуса в минеральных почвах не менее 1,8 %, подвижного фосфора и обменного калия не менее 150-200 мг/кг почвы. Пахотный горизонт почвы не должен содержать камни, неразложившиеся остатки древесины и другие инородные твердые включения размером более 50 мм.

Технология выращивания биологических ковров предусматривает предпосевную обработку почвы, посев трав, уход за посевами и уборку.

Предпосевная обработка почвы включает обычные для многих сельскохозяйственных культур технологические операции: вспашку плугами с винтовым или полувинтовым отвалом, выравнивание, дискование, культивацию и прикатывание.

Почва должна содержать не более 25 % агрегатов размером до 30 мм. Если требуемое качество не достигается, почву следует обрабатывать фрезами или комбинированными почвообрабатывающими машинами.

При первичном освоении участка под запашку вносят органические удобрения: при низком плодородии почв не менее 90 т/га, при среднем — 60-90 и высоком — не менее 20 т/га. В дальнейшем ежегодно, после срезки дёрна под запашку, вносят 8-16 т/га. Повышенную почвенную кислотность нейтрализуют. Непосредственно перед посевом производят заправку почвы минеральными удобрениями, исходя из уровня плодородия почв. При первичном освоении, а затем через 4-6 лет, земли, на которых выращивается дёрн, обрабатывают пестицидами против сорняков, нематоды, болезней, насекомых и других вредителей.

Посев трав производится с ранней весны, когда температура почвы в корнеобитаемом слое достигнет 7-8 °C и до конца августа. При посеве в сухую погоду необходимо обеспечить полив площадей.

Рекомендуемые травы при производстве дёрна для газонов - мятлик луговой, райграс пастбищный и низкорослые овсяницы. Газонные травы высевают как смесь двух и более видов (сортов). Норма высева устанавливается для каждого вида семян. Обычно высевают 80 – 100 кг/га травосмеси.

Лучшим способом посева газонных трав является разброснорядовой, при котором крупные семена злаковых трав, таких как овсяница, высевают при посеве сеялками СЗТ из зернового ящика сеялки через сошники рядовым способом с заделкой их на глубину 1,5-2 см, а мелкие семена мятлика - из травяного ящика вразброс через вынутые из сошников семяпроводы с заделкой их шлейфами или сцепкой легких борон на 0,5-1 см. При разбросном посеве многолетних трав проводят послепосевное прикатывание гладкими катками.

Семена трав по своему посевному качеству должны быть не ниже 1 класса. Перед посевом семена трав необходимо протравливать.

Для повышения прочности биологического ковра используется пластмассовая сетка с размерами ячеек не менее 1 см. Сетка позволяет срезать более молодой дёрн, когда корневища и побеги полностью не развиты. Обычно сетку вручную раскатывают по засеянной поверхности и закрепляют, чтобы предотвратить ее сдувание ветром.

Уход за посевами включает: полив для поддержания оптимальной влажности почвы в корнеобитаемом слое в пределах 70-100 % от наименьшей влагоемкости почвы; окашивание при достижении травостоем высоты 50-70 мм; подкормку растений 1-2 раза за вегетационный пери-

од гранулированными или жидкими комплексными удобрениями; борьбу с болезнями, сорняками и вредителями.

Уборка. Дерн из газонных трав нормально вызревает свыше года. Применение сетки позволяет получить готовый ковер в течение одного вегетационного периода.

Влажность минеральной почвы (объёмная) при уборке дерна должна быть 16-20, торфяной — 50-60 %. При меньшей влажности из-за повышенной плотности почвы ухудшаются условия работы уборочной техники и возможно снижение качества дёрна. При повышенной влажности — дерн может повреждаться (расползается).

Оптимальная толщина слоя дерна — 15-20 мм. Меньшую толщину дерна трудно выдержать при уборке из-за неровностей поверхности даже на малых скоростях работы машины. Дернина большей толщины хуже приживается, кроме того, повышаются затраты на ее уборку и доставку из-за увеличения массы.

Оптимальная ширина снимаемой ленты дернины 45-50 см. Такая ширина удобна для сматывания в рулоны, транспортирования, укладки, меньше повреждается при уборке.

Ориентировочная длина снимаемых лент 1,0-2,0 м. Для озеленения больших участков при технической возможности снимаются полосы более 2 м со скатыванием их в рулоны. Диаметр рулона, как правило, не превышает 40 см.

Для уборки используются комбайны с колебательным подрезающим ножом и механизмом создания рулонов.

Рулоны после уборки укладываются на жесткие поддоны, которые затем грузят на транспортные средства для вывоза с поля и доставки на объект.

Срок хранения рулонов после уборки не более 36 ч. В сухую погоду рулоны необходимо смачивать (поливать из шланга).

После неоднократных заготовок биологических ковров с одного участка, мощность оставшегося плодородного слоя должна быть не менее 10 см.

Экономическая оценка. С целью получения максимальной прибыли освободившиеся после уборки участки подготавливаются и засеваются вновь в кратчайшие сроки (обычно 2 недели). Ориентировочная проектная стоимость 1 м² дерна, выращенного промышленным способом по предлагаемой технологии (УП "Бровки" Минскзеленстроя), составляет 0,35 у.е. Для сравнения: стоимость производства 1 м² дерна по данным компании "Eure Sod" Университета Калифорнии составляет 1,68 \$.