ТРИБУНА МОЛОДОГО УЧЕНОГО

УДК 633."321": 631.82: 631.45

ВЛИЯНИЕ ПОГОДНЫХ УСЛОВИЙ, ДОЗ И СПОСОБОВ ПРИМЕНЕНИЯ МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА УРОЖАЙНОСТЬ И КАЧЕСТВО ЗЕРНА ЯРОВОГО ТРИТИКАЛЕ НА АНТРОПОГЕННО-ПРЕОБРАЗОВАННОЙ ТОРФЯНОЙ ПОЧВЕ

В.А. Журавлев, научный сотрудник Институт мелиорации

Ключевые слова: торфяная почва, урожайность, минеральные удобрения, яровое тритикале

Введение

В настоящее время в Беларуси особое значение приобретают вопросы, связанные с повышением продуктивности и качества зерна. По расчетам специалистов, в Беларуси для сбалансирования кормов по протеину ежегодно не хватает свыше 300 тыс. т переваримого протеина, т. е. около 15% потребности, что свидетельствует об актуальности этой проблемы для отечественного сельского хозяйства [1]. Поэтому особое внимание уделено новой перспективной зернофуражной и продовольственной культуре — тритикале. По сбору белка высокого качества с гектара она существенно превосходит все зерновые культуры. Для достижения поставленной цели в Государственной программе возрождения и развития села ставится задача до 2010 г. расширить посевные площади тритикале до 420, в том числе ярового — до 50 тыс. га [1, 2]. Мировой и отечественный опыт возделывания яровых зерновых культур по интенсивным технологиям свидетельствует о том, что среди факторов, определяющих урожайность и качество зерна, центральное место занимают удобрения [1].

Объекты и содержание исследований

Экспериментальные полевые исследования проводились в 2001-2004 гг. на опытном поле Полесской опытной станции мелиоративного земледелия и луговодства на антропогенно-преобразованных деградированных торфяных почвах, подстилаемых с глубины 35-45 см песком. Агрохимическая характеристика почвы (Ап.): рН в КСІ — 5,7; содержание органического вещества — 26%; минерального азота — 163 кг/га; доступных растениям соединений фосфора (0,2 н CH_3COOH) — 80 и калия — 569 кг/га почвы (слой 0 = 25 см). В качестве объекта исследований использовали яровое тритикале сорт Лана. Норма высева 4,0 млн. всхожих семян на гектар. Предшественник — горохо-овсяная смесь, поукосно — редька масличная. Схема опыта представлена в табл. 1, 2.

Результаты и обсуждение

Погодные условия (рис. 1, 2) в течение вегетации растений 2001 г. значительно отличались от среднемноголетних: апрель и май были теплыми (апрель на 2,8 °C выше)

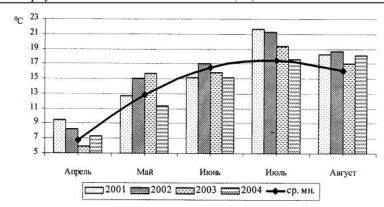


Рис. 1. Среднесуточная температура воздуха за вегетационные периоды 2001-2004 гг.

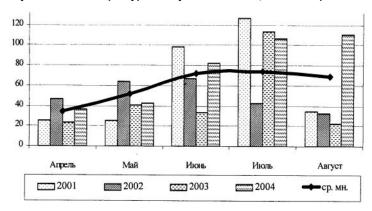


Рис. 2. Количество осадков, выпавших за вегетационные периоды 2001-2004 гг.

и сухими (на 26-51% осадков меньше). Частые дожди с ветрами в июне и июле (осадков выпало на 37-72% больше), переходящие в ливневые, и высокая температура в июле (на 4,1 °C выше) привели к полеганию ярового тритикале. Август был теплым (на 2,1 °C больше) и сухим (осадков выпало на 50% меньше).

Следует отметить, что погодные условия вегетационного периода 2002 г. отличались по этапам онтогенеза большой контрастностью и в целом от погодных условий 2001 г. Апрель-май были теплыми и влажными, а июнь (по осадкам и температуре) близким к средней многолетней. В июле-августе сумма выпавших осадков составила около 50% от средних многолетних показателей при более высокой (на 2,6-3,8 °C выше многолетней) температуре воздуха. В отдельные дни июня, июля и августа температура воздуха составляла 33,5-33,9 °C. Сложившиеся погодные условия вегетационного периода в начале вегетации способствовали хорошей влагообеспеченности и развитию растений, хорошему кущению, накоплению биомассы и закладке колоса. Однако недостаток влаги и высокая температура воздуха во второй период вегетации (после начала колошения) привели к сильной редукции побегов, снижению плотности продуктивного стеблестоя и низкой выполненности зерна.

Данные метеорологических условий 2003 г. указывают на нехватку и крайне неравномерное выпадение осадков (по декадам) при небольшом отклонении активных температур от среднемноголетней. Только в первой декаде июля осадков выпало в 1,4 раза больше среднемноголетней, а в последующие декады ощущался острый дефицит влаги. Апрель и июнь были прохладными (на 0,7-0,8 °C меньше многолетней), а май, июль и август – теплыми (на 0,9-2,9 °C больше многолетней). Таким образом, погодные условия 2003 г. сильно повлияли на урожай ярового тритикале.

Апрель 2004 г. характеризовался теплой погодой с достаточным количеством атмосферных осадков. Первая декада мая была теплее среднемноголетних значений и влажной. Последующие вторая и третья декады характеризовались недостатком тепла и влаги. В целом май оказался холоднее среднемноголетних значений на 1,4 °C и засушливее на 17,5%. Июнь был прохладным на 1,4 °C и в третьей декаде дождливым (59,5 мм). Июль и август были теплыми и дождливыми (осадков выпало больше среднемноголетней на 32,8 и 41,7 мм). Погодные условия при возделывании ярового тритикале в 2004 г. в целом были благоприятны для роста и развития растений и формирования высокой урожайности ярового тритикале.

Приведенные в табл. 1 данные за 2001-2003 гг.показывают, что с увеличением дозы азотных удобрений содержание белка в зерне ярового тритикале возрастает. Наиболее высокий уровень содержания белка в зерне отмечается при внесении оптимальной дозы азота удобрений в варианте N₉₀ на фоне P₈₀K₁₂₀ и в среднем за три года исследований составил 12,6, а в варианте без удобрений 10%. Важно отметить, что содержа-

Таблица 1. Влияние удобрений на содержание и выход сырого белка в зерне

Panyaut on ita	Урожай-	Содержание белка в зерне, %				Выход сырого белка, ц/га				
Вариант опыта	ность, ц/га	2001	2002	2003	среднее	2001	2002	2003	среднее	
Контроль (б/уд.)	31,5	8,1	11,7	10,3	10,0	2,8	4,1	2,5	3,1	
+ N ₆₀	37,2	9,0	11,3	11,0	10,4	3,6	5,0	3,1	3,9	
+ N ₉₀	39,8	10,6	13,0	9,6	11,1	3,9	6,4	3,2	4,5	
+ N ₁₂₀	41,8	10,9	12,3	10,0	11,1	4,0	6,3	3,8	4,7	
Р ₄₀ К ₈₀ – фон 2	37,9	11,3	11,9	10,5	11,2	4,1	5,2	3,6	4,3	
+ N ₆₀	41,1	10,6	13,0	11,5	11,7	3,9	6,2	4,5	4,9	
+ N ₉₀	42,3	11,2	13,5	10,7	11,8	4,3	6,7	4,2	5,1	
+ N ₁₂₀	43,6	10,7	12,9	11,2	11,6	4,0	6,7	4,5	5,1	
Р ₈₀ К ₁₂₀ – фон 3	39,6	10,5	13,3	11,6	11,8	3,8	6,1	4,3	4,7	
+ N ₆₀	42,9	10,1	12,7	11,1	11,3	3,8	6,5	4,4	4,9	
+ N ₉₀	45,4	11,9	14,1	11,7	12,6	5,0	7,5	4,8	5,8	
+ N ₁₂₀	44,6	10,0	12,9	11,1	11,3	3,7	6,6	5,0	5,1	
Р ₁₂₀ К ₁₆₀ – фон 4	39,6	11,3	11,9	12,1	11,8	4,0	5,3	4,7	4,7	
+ N ₆₀	43,1	11,1	12,1	10,6	11,3	4,1	6,0	4,5	4,9	
+ N ₉₀	45,3	10,6	13,5	11,2	11,8	4,0	7,3	4,9	5,4	
+ N ₁₂₀	45,0	11,4	12,8	12,1	12,1	4,5	6,7	5,3	5,5	
HCP _{0,5}	2,6	1,0	1,3	1,1	1,1	0,4	0,6	0,4	0,4	

ние белка в зерне зависит не только от наличия элементов питания в почве, но и от складывающихся погодных условий вегетационного периода.

В 2001 г. были относительно благоприятные погодные условия для прохождения фазы кущения и формирования элементов продуктивности ярового тритикале. Однако выпавшие обильные осадки в период трубкования и колошения с сильным ветром привели к полеганию посевов, снижению урожайности и содержания белка в зерне. В результате выход сырого белка составлял от 2,8 (без удобрений) до 5,0 ц/га.

В 2002 г. условия для закладки репродуктивных органов в целом были наиболее благоприятными. Поэтому, несмотря на недостаток влаги в почве, в период трубкование-колошение-созревание растений и редукции боковых побегов сформировалась относительно высокая урожайность и получено достаточно высокое содержание белка в зерне.

В 2003 г. погодные условия были благоприятными для прохождения фазы кущения. Однако из-за недостатка влаги в почве и слабого поглощения элементов питания в последующие фазы урожайность была получена наиболее низкая с невысоким содержанием белка в зерне. Наибольший выход сырого белка получен на фоне $P_{120}K_{160}$ с внесением N_{120} .

Приведенные в табл. 2 данные показывают, что дробное внесение азотных удобрений обеспечивает повышение содержания белка в зерне. Наибольшее его содержание получено при внесении азотных удобрений в подкормку $P_{80}K_{120}\,N_{60}+N_{30}''-$ в фазу флагового листа и $P_{80}K_{120}\,N_{90}+N_{30}''-$ в фазу колошения и в среднем за четыре года составило 13,0 и 13,1%. Выход сырого белка наибольший был в варианте $P_{80}K_{120}\,N_{90}+N_{30}''-$ в фазу колошения — 6,5 ц/га.

Таблица 2. Влияние способов применения азотных удобрений на содержание и выход сырого белка в зерне

Вариант опыта	Урожай- ность, ц/га	Содержание белка в зерне, %					Выход сырого белка, ц/га				
		2001	2002	2003	2004	сред- нее	2001	2002	2003	2004	сред- нее
Р ₈₀ К ₁₂₀ – фон	41,5	10,5	13,3	11,6	11,5	11,7	3,8	6,1	4,3	5,4	4,9
Φ oH + N_{60} + N'_{30}	48,2	10,8	14,4	12,3	12,5	12,5	4,1	7,5	5,6	7,2	6,1
Φ oH + N_{60} + N_{30}	48,0	9,6	14,3	13,3	11,6	13,0	3,9	7,4	5,8	6,5	6,2
Фон + N ₆₀ +N ^{///} ₃₀	48,7	11,2	13,8	11,6	13,0	12,4	4,7	7,0	5,3	7,4	6,1
Фон + N_{90} + N'''_{30}	49,2	12,8	13,9	11,4	14,3	13,1	5,6	7,3	5,3	7,8	6,5
HCP _{0,5}	4,0	1,1	1,3	1,2	1,3	1,2	0,5	0,7	0,5	0,7	0,6

 Π р u w e u a h u e . Азотные удобрения внесены: N — перед севом; N' — в подкормку в начале трубкования растений; N'' — фаза флагового листа; N''' — колошения.

Между уровнем содержания в почве элементов минерального питания (NPK), азотом, фосфором и калием растений ярового тритикале и сбором белка (ц/га) в среднем за три года исследований установлена корреляционная связь:

$$y = 0.007 x - 2.183$$
, $(R^2 = 0.85) - NPK$

```
\begin{split} y &= 1,38 \ x^{0,26}, \quad (R^2 = 0,67) - \text{азот} \\ y &= -0,0001 \ x^2 + 0,0482 \ x + 1,508, \quad (R^2 = 0,97) - P_2 O_5 \\ y &= 0,009 \ x - 0,398, \quad (R^2 = 0,91) - K_2 O. \end{split}
```

Вывод

По уровню урожайности дробное внесение азотных удобрений не имеет ярко выраженного преимущества перед однократным (перед посевом). Однако на деградированных торфяных почвах оно позволяет повысить содержание белка в зерне на 2-3% по сравнению с однократным и стабилизировать по годам урожайность зерна ярового тритикале на уровне 45-50 ц/га.

Литература

- 1. Булавина Т.М. Оптимизация приемов возделывания тритикале в Беларуси. Мн.: ИВЦ Минфина, 2005. 224 с.
- 2. Государственная программа возрождения и развития села на 2005-2010 годы. Мн.: Беларусь, 2005. 96 с.

Summary

Zhuravlev V. Influence of climatic conditions, doses and methods of mineral fertilizers on yield and quality of grain of spring triticale on anthropogeno-transformed bog soil

Presented: research results on climate, dose and method effect of chemical fertilizers consumption on yield and quality of crops of spring triticale on degraded bog lands. Evidenced: fractional fertilizer application favor an increase in protein content by 2-3% against single application (before sowing) and stabilizing the yield of grain of spring triticale 45-50 centers/hectare. Evidenced: correlation function of mineral nutrition content in soil, nitrogen, phosphate and potassium of the spring cultures of triticale and protein yield.

Поступила 15 марта 2007 г.