ЛУГОВОЕ КОРМОПРОИЗВОДСТВО

УДК 631.45+633.1

ДОПОЛНИТЕЛЬНЫЙ ИСТОЧНИК ПОПОЛНЕНИЯ КОРМОВ

П.Ф. Тиво, доктор сельскохозяйственных наук **И.Э.** Леуто, кандидат сельскохозяйственных наук (Институт мелиорации и луговодства НАН Беларуси)

В решении кормовой проблемы животноводства важная роль отводится возделыванию зерновых культур на мелиорированных торфяных почвах. Зерно, выращенное здесь, обычно богаче азотистыми веществами, чем полученное в тех же климатических условиях на минеральных землях. Однако, фазы развития растений, как показывают наблюдения, на торфяных почвах более растянуты, и созревание зерна затягивается. При этом формируется мощная вегетативная масса, что обуславливает сильное полегание возделываемых культур, затрудняет их уборку, а на переувлажняемых полях нередко приводит к полной потере урожая зерна. Последнее особенно имеет место в годы с повышенным выпадением атмосферных осадков за вегетационный период. Сказывается мощность органогенного слоя. По мере ее возрастания активизируются процессы нитрификации и усиливается накопление усвояемых форм азота в корнеобитаемом слое почвы. Это, в свою очередь, способствует полеганию растений.

Вместе с тем зеленая масса зерновых культур, выращенная в условиях обильного азотного питания и хорошей влагообеспеченности, содержит значительное количество азотистых веществ и может служить дополнительным источником протеина. Тем более, что рационы крупного рогатого скота все еще обеднены этим компонентом, из-за недостатка которого ограничивается продуктивность животных, сдерживается рост и развитие молодняка, ухудшается воспроизводство стада, понижается сопротивляемость заболеваниям и наблюдается перерасход кормов на получение единицы продукции [1].

Исследованиями, выполненными Институтом мелиорации и луговодства НАН Беларуси на глубокозалежных торфяниках в Ивацевичском районе Брестской области, установлено, что в фазе молочновосковой спелости озимая рожь на фоне $P_{60}K_{90}$ накапливает надземной сухой биомассы 84,7 ц/га, или на 22 % больше, чем в фазе полной спелости. У овса же максимальный выход ее приходится на период прохожде-

ния фаз от молочно-восковой до восковой спелости зерна — 118-127,5 ц/га (табл. 1). В условиях опыта он обеспечил наибольшую продуктивность биомассы. По намолоту зерна, наоборот, преимущество имеет ячмень, хотя по урожаю биомассы все фазы его развития, за исключением молочной спелости, практически не различались.

Таблица 1. Продуктивность зерновых культур (ц/га) на торфяных почвах по фазам развития растений (в среднем за 3 года)

Фаза	Озимая рожь		ИРК	иень	Овес		
развития	урожай	сбор сырого	урожай	сбор сырого	урожай	сбор сырого	
растений	сухой массы	протеина	сухой массы	протеина	сухой массы	протеина	
Молочная	<u>85,1</u>	<u>5,6</u>	<u>87,4</u>	<u>7,3</u>	89,0	<u>8,5</u>	
спелость	99,7	6,9	101,7	9,2	100,6	10,1	
Молочно-	84,7	6,9	106,9	11,0	118,2	10,8	
восковая	108,3	8,8	114,0	11,0	121,4	11,4	
спелость	106,5	0,0	114,0	11,5	121,4	11,4	
Восковая	86,4	<u>7,1</u>	105,8	10,0	127,5	10,8	
спелость	93,3	7,1	105,4	9,9	137,0	13,6	
Полная	69,4	5,2	106,1	9,7	97.4	6.5	
спелость	09,4	3,2	100,1	7,7	97,4	6,5	
в т.ч. зерно	29,6	3,9	41,9	6,2	29,4	3,9	

Примечание: В числителе – фон $P_{60}K_{90}$, в знаменателе – N_{35} $P_{60}K_{90}$.

Максимальный сбор сырого протеина для всех культур приходится на период фазы от молочно-восковой до восковой спелости зерна. У яровых зерновых выход его за это время достигает 10-11 ц/га, или на 31,0-35,5 % выше, чем у озимой ржи. Если учесть, что годовая потребность в сыром протеине коровы с удоем 5000 кг составляет 8,3 ц [2], то станут понятными полученные нами результаты. Кстати, в фазе полной спелости растений (зерно + солома) сбор сырого протеина всех культур ниже, чем в предыдущей фазе развития, хотя у ячменя это выражено в значительно меньшей степени.

Подкормка посевов аммиачной селитрой в дозе 35 кг/га азота положительно сказалась на продуктивности и сборе сырого протеина, прежде всего, на ранних стадиях развития растений. В фазу же восковой спелости это наблюдалось лишь у овса, у которого сбор протеина от внесения азота достиг 13,6 против 10,8 ц/га на фоне PK.

Как известно, для молочных коров содержание небелковых соединений в сыром протеине не должно превышать 20-30%. Этому требованию удовле-

творяют возделываемые культуры. Так, в молочно-восковой спелости ячмень, озимая рожь, овес содержали небелковых веществ в составе протеина соответственно 17, 20, 26 %. В восковой спелости эти цифры уменьшались в 1,2-2,1 раза при относительном возрастании концентрации белка.

Надземная биомасса зерновых культур содержит значительное количество и других веществ, необходимых для нормальной жизнедеятельности крупного рогатого скота (табл. 2). Жиром и фосфором на фоне РК богаче биомасса овса, калия больше в ячмене. Количество безазотистых экстрактивных веществ (БЭВ) в фазе молочно-восковой спелости в сухой массе растений превышает 50 %, а клетчатки содержится около 30 %, что соответствует зоотехническим нормам. Исключение составляет только фосфор [3]. На ранних стадиях развития в исследуемых культурах содержится его недостаточно, что надо учитывать при составлении кормового рациона.

Таблица 2. Химический состав надземной биомассы зерновых культур на торфяных почвах (% на сух. массу, в среднем за 3 года)

Фаза развития растений	Сырой протеин	Белок	Сырой жир	Сырая клетчатка	Сырая зола	БЭВ	К	P					
Озимая рожь													
Молочная спелость	6,56	5,25	2,64	31,46	3,85	55,49	1,64	0,13					
Молочно-восковая спелость	8,12	6,50	2,44	28,82	4,0	56,62	1,47	0,18					
Восковая спелость	8,19	7,0	3,08	29,19	3,63	56,91	1,15	0,19					
Полная спелость, зерно	13,17	11,86	0,92	2,96	1,94	81,01	0,46	0,37					
Солома	3,56	3,25	0,64	51,46	4,5	39,84	1,86	0,07					
Ячмень													
Молочная спелость	8,31	6,31	2,34	32,08	7,35	49,92	2,69	0,15					
Молочно-восковая спелость	10,25	8,5	1,98	28,13	6,68	52,96	2,61	0,21					
Восковая спелость	9,44	8,69	1,95	27,42	5,64	55,55	2,2	0,22					
Полная спелость, зерно	14,71	13,11	2,14	6,12	2,10	74,93	0,46	0,42					
Солома	5,56	3,88	0,8	50,84	6,47	36,33	2,05	0,09					
Овес													
Молочная спелость	9,50	7,00	2,85	32,34	7,33	47,98	2,86	0,21					
Молочно-восковая спелость	9,12	7,88	3,23	30,36	6,28	51,01	2,44	0,26					
Восковая спелость	8,50	7,56	2,78	28,91	5,75	54,03	2,22	0,17					
Полная спелость, зерно	13,11	11,70	4,33	11,54	2,32	68,7	0,51	0,38					
Солома	3,75	2,33	0,47	48,78	7,90	39,10	1,91	0,14					

Проявилось также некоторое влияние дополнительного внесения азота на качество урожая. В большинстве случаев подкормка посевов аммиачной селитрой способствовала незначительному повышению содержания в биомассе сырого протеина, а иногда и калия.

Таким образом, результаты исследований позволяют сделать вывод о том, что на торфяных почвах целесообразно использовать безобмолотную технологию уборки сильно полегших посевов озимой ржи и овса в фазе молочно-восковой спелости на монокорм. Это обеспечивает повышение продуктивности таких зерновых культур примерно на 20 %, а сбор протеина на 30-50 % по сравнению с уборкой их в фазу полной спелости. Однако мы ни в коей мере не противопоставляем данную технологию производству зерна, а ведем речь лишь об отдельных площадях, где иного выхода практически нет. Примерно такие суждения высказывают и другие авторы [4-5].

Убранную же биомассу в фазу молочно-восковой спелости, по данным Института животноводства НАН Беларуси, целесообразно использовать для приготовления силоса. Если это делать в фазу восковой спелости, то качество силоса ухудшается за счет образования масляной кислоты и снижения переваримости животными протеина, БЭВ и клетчатки. Низкая переваримость в фазе восковой спелости объясняется сепарацией зерна (осыпание на дно силосной траншеи) в период заготовки корма [6-7]. Но в любом случае необходимо тщательно измельчать биомассу для его приготовления [8].

Литература

- 1. Попов И.С., Дмитроченко А.П., Крылов В.М. Протеиновое питание животных. М.: Колос, 1975. 368 с.
- 2. Зимнович И.А. Кокорева П.А. Крупномасштабное и хозяйственное планирование кормовой базы для интенсивного производства молока. // Оптимизация кормления сельскохозяйственных животных. М.: Агропромиздат, 1991. С. 163-167.
- 3. Повышение качества и эффективности использования кормов. М.: Колос, 1983. 317 с.
- 4. Романов Г. Удвоим продуктивность кормового гектара. // Животноводство России. 2004. №5. С. 6-7.
- Эффективность производства концентрированного корма из зернофуражных культур. / В.Н. Шлапунов, Е.Ф. Борисенко, Т.Н. Лукашевич и др. // Известия Академии аграрных наук Республики Беларусь. – 2001. - № 3. – С. 26-29.
- Капустин Н.К. Теоретические и экспериментальные обоснования новых технологий заготовки травяных кормов с использованием нетрадиционных кормовых культур. – Мн., 2001. – 183 с.
- 7. Шофман Л.И. Однолетние кормовые культуры в составе смесей. Мн., 1997. 175 с.
- 8. Производство грубых кормов (в 2-х кн.) / Под общей ред. Д. Шпаара. Торжок: ООО «Вариант», 2002. Кн. 1. 360 с.